Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone.
نویسندگان
چکیده
RATIONALE Obesity is a risk factor for cardiovascular dysfunction, yet the underlying factors driving this impaired function remain poorly understood. Insulin resistance is a common pathology in obese patients and has been shown to impair vascular function. Whether insulin resistance or obesity, itself, is causal remains unclear. OBJECTIVE The present study tested the hypothesis that insulin resistance is the underlying mediator for impaired NO-mediated dilation in obesity by genetic deletion of the insulin-desensitizing enzyme protein tyrosine phosphatase (PTP)1B in db/db mice. METHODS AND RESULTS The db/db mouse is morbidly obese, insulin-resistant, and has tissue-specific elevation in PTP1B expression compared to lean controls. In db/db mice, PTP1B deletion improved glucose clearance, dyslipidemia, and insulin receptor signaling in muscle and fat. Hepatic insulin signaling in db/db mice was not improved by deletion of PTP1B, indicating specific amelioration of peripheral insulin resistance. Additionally, obese mice demonstrate an impaired endothelium dependent and independent vasodilation to acetylcholine and sodium nitroprusside, respectively. This impairment, which correlated with increased superoxide in the db/db mice, was corrected by superoxide scavenging. Increased superoxide production was associated with increased expression of NAD(P)H oxidase 1 and its molecular regulators, Noxo1 and Noxa1. CONCLUSIONS Deletion of PTP1B improved both endothelium dependent and independent NO-mediated dilation and reduced superoxide generation in db/db mice. PTP1B deletion did not affect any vascular function in lean mice. Taken together, these data reveal a role for peripheral insulin resistance as the mediator of vascular dysfunction in obesity.
منابع مشابه
Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.
Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympa...
متن کاملIncreasing peripheral insulin sensitivity by protein tyrosine phosphatase 1B deletion improves control of blood pressure in obesity.
Obesity is a major risk factor for hypertension. The copresentation of hypertension and insulin resistance (IR) suggests a role for IR in blood pressure (BP) dysregulation. To test this hypothesis, peripheral IR has been genetically subtracted in a model of obesity by crossing leptin receptor mutant mice (K(db)H(PTP)) with mice lacking protein tyrosine phosphatase 1B (insulin desensitizer, H(db...
متن کاملAdipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unc...
متن کاملProtein Tyrosine Phosphatase 1B, a Major Regulator of Leptin-Mediated Control of Cardiovascular Function
Background—Obesity causes hypertension and sympathoactivation, a process proposed to be mediated by leptin. Protein tyrosine phosphatase 1B (PTP1B), a major new pharmaceutical target in the treatment of obesity and type II diabetes mellitus, constrains the metabolic actions of leptin, but the extent to which PTP1B regulates its cardiovascular effects is unclear. This study examined the hypothes...
متن کاملReduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats.
Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 105 10 شماره
صفحات -
تاریخ انتشار 2009